Direct-Photon Production from SPS to RHIC Energies

Klaus Reygers
University of Münster

for the PHENIX Collaboration

Why Direct Photons? (I)

- Direct Photons
 - Pragmatic Definition:
 Photons not coming from hadron decays
 - Difficult measurement: Large Background from

$$- \pi^0 \longrightarrow \gamma + \gamma$$

-
$$\eta \rightarrow \gamma + \gamma$$

- p+p:
 - Late 1970's:

 Direct Photons suggested presence of pointlike charged objects within hadrons
 - Test of QCD
 - Focus now on constraining gluon distribution functions
 - Quark-Gluon Compton scattering contributes at leading order (LO)
 - This is in contrast to Deep Inelastic Scattering and Drell-Yan where gluon is involved only at NLO

Why Direct Photons? (II)

- Nucleus+Nucleus collisions
 - Photons don't interact with the fireball and carry information about early stage of the A+A collision
 - QGP potentially detectable via thermal photon radiation
 - Thermal photons dominantly from early hot QGP phase:
 - → initial temperature
 - Direct Photons at high p_T
 - Allow test of N_{coll} scaling for hard processes
 - Important for interpretation of high p_T hadron suppression at RHIC

Direct Photon Production in p+p: Hard Scattering

Processes in pertubative QCD

 Typically 20-30% uncertainty in pQCD calculations related to choice of scales

Evidence for k_T Broadening

E706, hep-ex/0407011

- Systematic pattern of deviation between NLO pQCD and data
 - Data above pQCD
 - ◆ Especially at low √s
- Possible explanation: k_T broadening (which can be produced by multiple soft-gluon emission)

Photon Sources in A+A

pQCD or prompt photons

Interaction of hard parton with QGP

1)
$$q_{hard} + \overline{q}_{QGP} \rightarrow \gamma + g$$
 and $q_{hard} + g_{QGP} \rightarrow \gamma + q$

2) Medium induced photon bremsstrahlung

Schematic Photon Spectrum in A+A

Advantage in central A+A at RHIC:
 Decay photon background strongly reduced due to to π⁰ suppression

Realistic Calculation

Turbide, Rapp, Gale, Phys. Rev. C 69 (014902), 2004

Window for thermal photons from QGP in this calculation: $p_T = 1 - 3 \text{ GeV/}c$

Thermal Photons as QGP Signature

- Conventional wisdom ca 1985:
 - QGP has lots of quarks flying around
 - QGP radiates more than HG at the same temperature (false!)
 - Lots of thermal radiation is evidence for QGP
- Current conventional wisdom:
 - QGP has more d.o.f. than HG and therefore lower temperature at the same energy density ε ($\varepsilon \sim g \cdot T^4$)
 - At the same energy density QGP radiates less then HG
 - Lack of radiation is evidence for QGP!

Thermal Photon Rates in QGP

State-of-the-art result from Arnold, Moore, and Yaffe (including Landau-Pomeranchuk-Migdal destructive interference effect)

- Final thermal photon spectrum:
 QGP and HG photon rates
 convoluted with space-time
 evolution of the reaction
- Thermal photon rate in QGP
 - Hard-thermal-loop resummation
 - Effective in-medium Quark and Gluon propagators
 - Processes
- - Quark-antiquark annihilation
 - Annihilation with Scattering (AWS)
 - Bremsstrahlung

Photon Rates in HG and QGP

Steffen and Thoma, Phys. Lett. B 510, 98 (2001)

- Typical processes for direct photon production in hot hadron gas (HHG)
 - \bullet $\pi + \rho \rightarrow \pi + \gamma$
 - $\pi + N \rightarrow N + \gamma$
- Hadron gas at T=200 MeV radiates more than QGP at the same temperature

Measurement of Direct Photons

- Measure p_T spectrum of π^0 and η mesons with high accuracy
- Calculate number of decay photon per π^0
 - Usually with Monte-Carlo
 - m_T scaling for (η) , η' , ω , ...
- Get clean inclusive photon sample
 - Charged background subtraction
- Finally: Subtract decay background from inclusive photon spectrum

Handy formula:

$$\frac{d\sigma}{dp_{T}} \propto 1/p_{T}^{n}$$

$$\Rightarrow \frac{\gamma_{\pi^{0}}^{\text{decay}}}{\pi^{0}} = \frac{2}{n-1} \approx 0.28 \text{ at RHIC}$$

"
$$\gamma_{\text{direct}} = \gamma_{\text{inclusive}} - \gamma_{\text{decay}}$$
"

Why this is Difficult

Systematic errors
(e.g. energy scale non-linearity)
partially cancel in this ratio

$$R = \frac{\gamma_{\text{measured}}}{\gamma_{\text{decay}}} = \frac{(\gamma / \pi^{0})_{\text{measured}}}{(\gamma / \pi^{0})_{\text{decay}}}$$

$$\gamma_{\text{direct}} = (1 - \frac{1}{R}) \cdot \gamma_{\text{measured}}$$

WA98 Result

- 20% direct photon
 excess at high p_T in
 central Pb+Pb collisions
 at CERN SPS
- No signal within errors in peripheral collisions

WA98 Direct Photon Spectrum

Thermal photon signal?

WA98 Interpretation I: pQCD with Nuclear k_T Broadening?

Dumitru et al., Phys. Rev. C 64, 054909 (2001)

- High p_T part of the spectrum explained by pQCD + nuclear k_T broadening
 - p+p: $\langle k_T^2 \rangle \approx 1.4 \text{ GeV}^2$
 - $A+A: \langle k_T^2 \rangle \approx 2.4 \text{ GeV}^2$
- Intermediate p_T range cannot be explained regardless of amount of k_T

WA98 Interpretation II: T or k_T ?

- QGP + HG rates convoluted with simple fireball modell plus pQCD hard photons
- Data described with initial temperate T_i=205 MeV + some nuclear k_T broadening (Cronin -effect)
- Data also described without k_T broadening but with high initial temperature (T_i=270 MeV)
- Other Models (see e.g.
 Huovinen et al., Nucl. Phys. A
 650 (227) 1999) explain data
 without assuming QGP

Turbide, Rapp, Gale, Phys. Rev. C 69 (014902), 2004

WA98: New low-p_T Points

- Two photon correlations observed and attributed to Bose-Einstein correlations of direct photons
- Correlation strength used to extract direct photon signal at low p_T
- New points not described by current models

Direct Photons at RHIC: p+p

- Data show good agreement with NLO pQCD calculation
- Important baseline for interpretation of Au+Au results

Direct Photons at RHIC: Au+Au

Expectation for N_{coll} scaling of direct photons

- Strong direct photon signal in central Au+Au
- Direct Photons at high p_T follow N_{coll} scaling
- Errors currently too large for statement about thermal photon signal

Centrality Dependence

N_{coll} scaling holds for all centrality classes (within errors)

Beyond simple N_{coll} Scaling: k_T Effects and Photons from Quark-Jets

- Effect of k_T strongest where thermal QGP photons are expected
- Interaction of fast quarks with QGP significant photons source for $p_T < 6 \text{ GeV/}c \text{ (Jet-Photons: } \mathbf{q}_{hard} + \overline{\mathbf{q}}_{QGP} \rightarrow \gamma + \mathbf{g} \text{ and } \mathbf{q}_{hard} + \mathbf{g}_{QGP} \rightarrow \gamma + \mathbf{q} \text{)}$

What about Photon Bremsstrahlung in A+A?

- Bremsstrahlung contribution large
- Modification of Bremsstrahlung contribution expected in A+A

Modification of Bremsstrahlung Contribution in A+A

Jeon, Jalilian-Marian, Sarcevic, Nucl. Phys. A 715, 795 (2003)

Zakharov, hep-ph/0405101

- Quark energy loss in QGP reduces bremsstrahlung contribution in A+A
- However, this is compensated by induced photon bremsstrahlung in QGP (according to Zakharov)
- Net result: direct photon $R_{AA} \ge 1$ at high p_T

Model-independent Representation of π^0 Suppression

Standard representation relies on assumptions about scaling of hard scattering processes in A+A:

$$R_{AA} = \frac{\left. \frac{\mathrm{d}^{2} N / \, \mathrm{d} p_{T} \, \mathrm{d} y \right|_{A+A}}{\left\langle N_{\text{coll}} \right\rangle / \sigma_{\text{inel}}^{\text{pp}} \times \left. \frac{\mathrm{d}^{2} \sigma / \, \mathrm{d} p_{T} \, \mathrm{d} y \right|_{p+p}}$$

- PHENIX result on high p_T direct photon production confirms this assumption
- However, it seems natural to avoid model assumptions and to use high p_T direct photons as a direct measure of the number of hard scatterings in A+A

Define:

$$G_{AA} = \frac{(\gamma_{\text{direct}} / \pi^0)_{p+p}}{(\gamma_{\text{direct}} / \pi^0)_{A+A}}$$

If direct photons exactly follow N_{coll} scaling than

$$G_{AA} = R_{AA}$$

$\gamma_{\rm direct}/\pi^0$

Blue points are another representation of the PHENIX preliminary double ratio:

$$\frac{(\gamma / \pi^{0})_{\text{measured}}}{(\gamma / \pi^{0})_{\text{decay}}} - 1 \times 0.3$$

$$\frac{(\gamma / \pi^{0})_{\text{decay}}}{\text{above } p_{T} = 3 \text{ GeV/}c}$$

G_{AA} in central Au+Au at RHIC

G_{AA} agrees well with the standard R_{AA} representation of the neutral pion suppression

G_{AA} at CERN SPS

- G_{AA} consistent with 1 at high p_T ($p_T > 3$ GeV/c)
- Moderate π^0 suppression also consistent with data

Summary

Pb+Pb at CERN SPS: Direct photon signal consistent with QGP scenario, however, models without QGP are also able to explain the data

Au+Au at RHIC: Direct photon signal observed at high p_T confirms N_{coll} scaling for hard processes and supports explanation of pion suppression as final state effect

Backup Slides

R_{AA} for Different Energies

